How college credit in high school shifts college course-taking

Oded Gurantz (College Board and Stanford University)
Mike Hurwitz (College Board) Jon Smith (Georgia State)

APPAM 2017

College preparation matters

- Students spend a dozen years developing skills for college and labor force
- How can this time be used most efficiently?
- Efforts to expose high school students to advanced coursework can improve postsecondary and labor market outcomes
- Early College High School increased college attendance and early degree completion (Berger, Turk-Bicakci, Garet, Knudson, Hoshen, 2014; Edmunds, Unlu, Glennie, Bernstein, Fesler, Fury, \& Arshavsky, 2017)
- Increasing math standards improves occupational outcomes for minority students (Goodman, 2017)

[^0]
Research Question

- Primary question: How does receiving college credit in high school shift the depth or breadth of their curricular choices?
- Context: Advanced Placement (AP) courses
- 2.6 M students and 4.7 M exams taken in 2016
- Previous research shows that AP causally decreases time-to-degree and shifts choice of college major (Smith, Hurwitz, \& Avery, 2017; Avery, Gurantz, Hurwitz, \& Smith, 2017)
- Our claim: Earning STEM credit increases depth of STEM study
- Non-STEM unclear

[^1]
Context and Data

- Link AP exam takers in Florida to public postsecondary transcripts
- Use 2004, 2005, and 2006 graduating high school cohorts
- Transcripts end in 2010
- Can follow each cohort four years
- Focus on ten most popular AP exams
- STEM: Bio, Chem, Physics, Calc, Stat
- Non-STEM: Eng Lang \& Lit, US Govt \& Hist, Psychology
- As expected, sample is more likely to be highperforming (SAT) and higher SES

Methodology

- Regression discontinuity design
- Continuous score that maps into 1 to 5 integer scores

Methodology

- Regression discontinuity design
- Continuous score that maps into 1 to 5 integer scores
- Focus on college credit
- Stack multiple thresholds
- Use short bandwidths to avoid overlap

BCollegeBoard

Each AP exam scored from 0 to 150 points

Methodology

- Regression discontinuity design
- Continuous score that maps into 1 to 5 integer scores
- Focus on college credit
- Stack multiple thresholds
- Use short bandwidths to avoid overlap (6 points)
- Identify credit policies from Florida campuses
- Use thresholds with no credit offerings as "falsification" tests

BCollegeBoard

$$
Y_{i e t}=\beta_{0}+\beta_{1} * \text { Credit }_{i e t}+\text { dist }_{i e t}+\theta_{e t}+X_{i}+\varepsilon_{e i t}
$$

Includes exam-by-year FE and s.e. clustered by student

Validity checks

- Students unable to sort around thresholds and scores predetermined
- Regressions test balance on:
- Sector of attendance
- Covariates
- No difference in four-year persistence

BCollegeBoard

STEM Findings

- Being offered college-credit decreases likelihood of taking the requisite course by $\sim 25 p p$
- Additional beneficial impacts on math remediation or "combined, two-semester" introductory courses
- Above the threshold, Math students more likely to repeat than Physical Sciences

STEM exams: $2 / 3$ threshold

- Took AP-level equivalent

Took higher level courses

- CollegeBoard

STEM Findings

- Large first-year impacts on:
- Taking higher-level courses in AP exam subject
- Additional STEM units outside of subject
- Results large but less precise after four years

BCollegeBoard

Impacts of crossing AP threshold on course-credit offering, STEM exams

	1 year	4 years
Total courses	0.077	-0.211
	(0.105)	(0.399)
Total courses in AP subject above AP	$0.095^{* *}$	$0.141+$
exam	(0.034)	(0.078)
Took zero courses (\%)	$-0.067^{* *}$	$-0.036+$
	(0.019)	(0.019)
Took one course (\%)	$0.047^{* *}$	0.017
	(0.016)	(0.015)
Took two or more courses (\%)	0.020	0.019
	(0.013)	(0.020)
STEM courses	$0.234^{* *}$	0.244
	(0.084)	(0.289)
Non-STEM courses	0.015	-0.129
	(0.096)	(0.380)

Notes. $+p<0.1,{ }^{*} p<0.05,{ }^{* *} p<0.01$. STEM regressions include 9,801 observations.

STEM findings

- Results consistent across related outcomes:
- Courses/units, attempted/passed
- Not driven by early dropouts or major choice
- Varying estimates across bandwidths, results generally robust or positive after four years

BCollegeBoard

Total AP Field Units

Total STEM Units (Outside of AP exam)

Non-STEM findings

- Students ~ 40 pp less likely to take requisite course
- Credit policies:
- Increase likelihood of taking zero courses in AP exam subject
- Increase general nonSTEM courses
©CollegeBoard

Impacts of crossing AP threshold on course-credit offering, Non-STEM exams

	1 year	4 years
Total courses	0.016	-0.161
	(0.067)	(0.257)
Total courses in AP subject above AP	-0.003	-0.034
exam	(0.012)	(0.036)
Took zero courses (\%)	0.013	$0.032^{* *}$
	(0.010)	(0.011)
Took one course (\%)	-0.022^{*}	-0.010
	(0.010)	(0.011)
Took two or more courses (\%)	0.010^{*}	
	(0.004)	-0.022^{*}
		(0.009)
STEM courses	0.039	-0.258
	(0.056)	(0.181)
Non-STEM courses	$0.249 * * *$	0.477^{*}

Notes. $+\mathrm{p}<0.1,{ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$. Non-STEM regressions include 28,159

Depth vs. breadth

- Depth: Divide units into distinct categories
- AP courses
- Departments most commonly associated with (or outside) AP exam
- Breadth: Number of total departments

Impacts of crossing AP threshold on concentration of course-offerings, fouryear persisters

	STEM	Non-STEM
	4 years	4 years
Depth of course offerings		
Any AP designated courses	-0.942+	-1.661***
	(0.504)	(0.283)
Top 3 departments	0.609+	0.026
	(0.342)	(0.110)
Outside top 3 department	-1.322	1.328*
	(0.998)	(0.587)
Breadth of course offerings		
Number of departments	-0.430*	-0.088
	(0.189)	(0.120)

Notes. $+p<0.1,{ }^{*} p<0.05,{ }^{* *} p<0.01$.

BCollegeBoard

Next Steps and Discussion

- Students use college credit to significantly shift coursetaking patterns
- Significant differences in the way students use STEM and non-STEM credit
- STEM credit used to increase STEM focus whereas nonSTEM credits increase flexibility
- May be largely due to selection in who takes exams
- Additional ways to think about curricular choice?
- Power is relatively weak on four-year outcomes

BCollegeBoard

[^0]: BCollegeBoard

[^1]: BCollegeBoard

