How college credit in high school shifts college course-taking

Oded Gurantz (College Board and Stanford University) Mike Hurwitz (College Board) Jon Smith (Georgia State)

**APPAM 2017** 

O CollegeBoard

# College preparation matters

- Students spend a dozen years developing skills for college and labor force
- How can this time be used most efficiently?
- Efforts to expose high school students to advanced coursework can improve postsecondary and labor market outcomes
  - Early College High School increased college attendance and early degree completion (Berger, Turk-Bicakci, Garet, Knudson, Hoshen, 2014; Edmunds, Unlu, Glennie, Bernstein, Fesler, Fury, & Arshavsky, 2017)
  - Increasing math standards improves occupational outcomes for minority students (Goodman, 2017)



## **Research Question**

- Primary question: How does receiving college credit in high school shift the depth or breadth of their curricular choices?
- Context: Advanced Placement (AP) courses
  - 2.6M students and 4.7M exams taken in 2016
  - Previous research shows that AP causally decreases time-to-degree and shifts choice of college major (Smith, Hurwitz, & Avery, 2017; Avery, Gurantz, Hurwitz, & Smith, 2017)
- Our claim: Earning STEM credit increases depth of STEM study
  - Non-STEM unclear

## Context and Data

- Link AP exam takers in Florida to public postsecondary transcripts
  - Use 2004, 2005, and 2006 graduating high school cohorts
  - Transcripts end in 2010
    - Can follow each cohort four years
- Focus on ten most popular AP exams
  - STEM: Bio, Chem, Physics, Calc, Stat
  - Non-STEM: Eng Lang & Lit, US Govt & Hist, Psychology
- As expected, sample is more likely to be highperforming (SAT) and higher SES



## Methodology

- Regression discontinuity design
  - Continuous score that maps into 1 to 5 integer scores

| Each AP exam scored from 0 to 150 points |   |   |   |   |  |
|------------------------------------------|---|---|---|---|--|
| 1                                        | 2 | 3 | 4 | 5 |  |

## Methodology

- Regression discontinuity design
  - Continuous score that maps into 1 to 5 integer scores
- Focus on college credit
  - Stack multiple thresholds
  - Use short bandwidths to avoid overlap



## Methodology

- Regression discontinuity design
  - Continuous score that maps into 1 to 5 integer scores
- Focus on college credit
  - Stack multiple thresholds
  - Use short bandwidths to avoid overlap (6 points)
  - Identify credit policies from Florida campuses
  - Use thresholds with no credit offerings as "falsification" tests



$$Y_{iet} = \beta_0 + \beta_1 * Credit_{iet} + dist_{iet} + \theta_{et} + X_i + \varepsilon_{eit}$$
  
Includes exam-by-year FE and s.e. clustered by student

## Validity checks

- Students unable to sort around thresholds and scores predetermined
- Regressions test balance on:
  - Sector of attendance
  - Covariates
- No difference in four-year persistence



## **STEM Findings**

- Being offered college-credit decreases likelihood of taking the requisite course by ~ 25pp
  - Additional beneficial impacts on math remediation or "combined, two-semester" introductory courses
  - Above the threshold, Math students more likely to repeat than Physical Sciences



#### 

## **STEM Findings**

- Large first-year impacts on:
  - Taking higher-level courses in AP exam subject
  - Additional STEM units outside of subject
- Results large but less precise after four years

| Impacts of crossing AP threshold on course | e-credit offering, S | TEM exams |
|--------------------------------------------|----------------------|-----------|
|                                            | 1 year               | 4 years   |
| Total courses                              | 0.077                | -0.211    |
|                                            | (0.105)              | (0.399)   |
| Total courses in AP subject above AP       | 0.095**              | 0.141+    |
| exam                                       | (0.034)              | (0.078)   |
| Took zero courses (%)                      | -0.067**             | -0.036+   |
|                                            | (0.019)              | (0.019)   |
| Took one course (%)                        | 0.047**              | 0.017     |
|                                            | (0.016)              | (0.015)   |
| Took two or more courses (%)               | 0.020                | 0.019     |
|                                            | (0.013)              | (0.020)   |
| STEM courses                               | 0.234**              | 0.244     |
|                                            | (0.084)              | (0.289)   |
| Non-STEM courses                           | 0.015                | -0.129    |
|                                            | (0.096)              | (0.380)   |

Notes. + p<0.1, \* p<0.05, \*\* p<0.01. STEM regressions include 9,801 observations.

## STEM findings

- Results consistent across related outcomes:
  - Courses/units, attempted/passed
- Not driven by early dropouts or major choice
- Varying estimates across bandwidths, results generally robust or positive after four years





## Non-STEM findings

- Students ~40pp less likely to take requisite course
- Credit policies:
  - Increase likelihood of taking zero courses in AP exam subject
  - Increase general non-STEM courses

| Impacts of crossing AP threshold on cours | e-credit offering, No | n-STEM exams |
|-------------------------------------------|-----------------------|--------------|
|                                           | 1 year                | 4 years      |
| Total courses                             | 0.016                 | -0.161       |
|                                           | (0.067)               | (0.257)      |
| Total courses in AP subject above AP      | -0.003                | -0.034       |
| exam                                      | (0.012)               | (0.036)      |
| Took zero courses (%)                     | 0.013                 | 0.032**      |
|                                           | (0.010)               | (0.011)      |
| Took one course (%)                       | -0.022*               | -0.010       |
|                                           | (0.010)               | (0.011)      |
| Took two or more courses (%)              | 0.010*                | -0.022*      |
|                                           | (0.004)               | (0.009)      |
| STEM courses                              | 0.039                 | -0.258       |
|                                           | (0.056)               | (0.181)      |
| Non-STEM courses                          | 0.249***              | 0.477*       |
|                                           | (0.059)               | (0.237)      |

Notes. + p<0.1, \* p<0.05, \*\* p<0.01. Non-STEM regressions include 28,159

#### 

## Depth vs. breadth

 <u>Depth</u>: Divide units into distinct categories

> AP courses
> Departments most commonly associated with (or outside) AP exam

#### <u>Breadth</u>: Number of total departments

Impacts of crossing AP threshold on concentration of course-offerings, fouryear persisters

|                             | STEM    | Non-STEM  |
|-----------------------------|---------|-----------|
|                             | 4 years | 4 years   |
| Depth of course offerings   |         |           |
| Any AP designated courses   | -0.942+ | -1.661*** |
|                             | (0.504) | (0.283)   |
| Top 3 departments           | 0.609+  | 0.026     |
|                             | (0.342) | (0.110)   |
| Outside top 3 department    | -1.322  | 1.328*    |
|                             | (0.998) | (0.587)   |
| Breadth of course offerings |         |           |
| Number of departments       | -0.430* | -0.088    |
|                             | (0.189) | (0.120)   |

Notes. + p<0.1, \* p<0.05, \*\* p<0.01.

# Next Steps and Discussion

- Students use college credit to significantly shift coursetaking patterns
- Significant differences in the way students use STEM and non-STEM credit
  - STEM credit used to increase STEM focus whereas nonSTEM credits increase flexibility
  - May be largely due to selection in who takes exams
- Additional ways to think about curricular choice?
  - Power is relatively weak on four-year outcomes

